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Several last decades are the period of intensive
development of forecasting methods. The followingattors
stimulate this fact:

- development of theory of forecasts — mainly in the
area of stochastic methods and artificial neuronal
networks,

- dynamic increase of capacity of computing systems,

- complexity of economic phenomena especially
reflected at financial markets and availability ofhuge
data sets in computer systems.

Existing methods allow modeling and forecasting of
phenomena with significant complexity, variability and
variety. However, there exists the need for furthemworks —
in the area of theory and application — in this fiéd.
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Main directions of development of forecasting
methods.

univariate linear time series models,
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Summary and conclusions.
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. Introduction to the theory of forecasting.

. Main directions of development of forecasting meiho
univariate linear time series models:

trend (regression), exponential smoothing, ARIMA,;
combination of forecasts:

linear combination and others (nonparametric apgroartificial neural
networks);

multiple linear time series models:
bivariate ARMA,

univariate nonlinear time series models (having tivadiate
extensions):

Kalman’s filter, ARCH and GARCH, regime switchinggtificial neural
networks.

. Some comparisons of empirical forecasts.
. Summary and conclusions.

. Basic literature.
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1. Introduction to the theory of forecasting

The reasons of application of time series
forecasting

» speed and low costs,

» formalization of forecasting process and known
properties of forecasts,

* limited requirements about data,

» broad spectrum of methods
 reference point to other methods,

e component for combining forecasts,

» often, the only formalized method of forecasting.
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Background for forecasting

e Forecasting — prediction of future events or pEseS
based on rational bases.

o« Assumptions — there exists a “mechanism” of
predicted process (usually stochastic process)chwhi
can be identified, with a use of the statisticalthmds
and extrapolated in the future. The stochastic gsec
(SP) is the sequence of dependent in some way mando
variables. Identification — on the basis of timeiee
(TS), i.e. some set of observations - finite redion of
the process.

*The TS is used for determination of: a type of SP
(model), estimation of its parameters, validatidrthe
model (ex’ante, ex’post), extrapolation of a model
(forecasting) and determining of precision of f@ss.

* The forecast can be in point or interval form,iaih

are analogy to point and interval estimators; fomp
forecasts is possible to determine measurements of
accuracy, usually variance (or SD) of predictiomer

» Optimal forecast minimizes (usually) the variarafe
error.
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» Area of application of forecasting methods:
- Financial market,

Economy, monetary policy, public finance,

Operational management,

Industrial processes,

Demography.

» Main groups of linear methods:

Regression models,

Exponential smoothing methods,

Autoregressive moving averages models (ARIMA),

Transfer function and intervention models
(ARMAX not discussed),

Combaining forecasts.
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* Main groups of non-linear methods:

Autoregressive conditional heteroscedastic models
(ARCH),

Generalized autoregressive conditional
heteroscedastic models (GARCH),

State space models,

Regime-switching models: threshold
autoregressive, Markov-switching (TAR, SETAR,
STAR, MSW),

Artificial networks models.
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» The forecasting process (in general):
- Problem definition,
- Data collection,
- Data analysis,
- Model selection and fitting (estimation),
- Model validation,
- Forecasting model deployment,

- Monitoring forecasting model performance.
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» Basing statistical tools
Time series y,,t=1,...,T;
forecast y.,,,h=1,

forecast error: e.n = Y,n = Yiens

stationary TS:
- strictly - If joint probability distribution of
Yir Yesgr - Yiap IS the same asy,,, Yo -0 Yeakens
- weakly - If the expected valueE(y,) = y, and variance
oy=E(y- ,uy)2 are constants and covariance function

=Cov(Y,, Yir)» kK=0,1,2,..., K is a function of lagk.

Sample autocovariance ¢, and autocorrelation ry
functions:

T
2 Y

t=1

|

6= T (Y o9 ) k=01 20K: Y 3

10
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Forecasting errors (for comparisons of models):

Mean error (one-step-ahead):ME =% ieu
t=1

Mean absolute deviation:MAD = = i\ a
Nt=1

1 n
Mean square error: MSE== Y ¢,
Nt=1

Mean absolute percent:MAPE _1 i\ 3100\.
n t=1 t

Criteria for model adequacy:

: 1 T
Mean square error of residuals: s = — >
—Pt=1

(p — number of estimated parameters of the model),

.
>ef
R — square statistic (0, 1)R>=1- - t=1

> (yt - y)Z
t=1

11
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SZ

15 v)2
T-1§1(yt -Y)

Adjusted R — square: R3g =1-

2

Akaike information criterion: AIC = In(%) +% ,
s’ pin(T)
Schwarz information criterion: SC = In(?) +P T
2
Corrected (consistent) AICC: AICC = In(%) +% :
— p_

SIC, AICC - consistent criterions of model selectio
(detect true model asT gets large), AIC — asymptotically
consistent (approaches the true model as fast asyanther
criterion).

12
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« The basis for time series forecasting - the thegpr of
stochastic processes: identification (of type), estation,
verification and optimal extrapolation - for assuned
criterion function (variance of error).

* The first models have been based on the formula:
Y = f(t)+£t; t=1 ...,
Y; — forecasted series (random variables),

f (t) — some (deterministic) function of timet,

& — (Gaussian) white noiseN(Q , g2);

Stochastic assumptions can be significantly weaker.

« The basis of the model — the representation of ¢h
stochastic processy; as the sum of (uncorrelated)

deterministic p; and stochastic Z;, components (Wold,
Cramer):

Ye=De+tzZ: (t=1..); Yi=X Ci&t-jr» Yi= X CJZ<°°-
j=0 =0

D: - deterministic, z,- purely non-deterministic, c? .

parameters, D;,Z; - uncorrelated.

* Examples:

f(t)=bo+tht +..+bt*, () =bo+bSin2Z +p,cos?Z.

13
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« The estimation determines the optimal estimates fo
parameters of the models, the verification examines
accuracy of the obtained form, the extrapolation
determines optimal forecasts, i.e. minimizing assued

criterion, e.g. variance of forecast error (optimalpredictor

- the conditional expected value of the forecasteghriable,

for given information set).

« The estimation applies statistical methods: the ehst
squares, maximal likelihood, non-parametric methods
robust methods.

» The verification is usually based on statisticatlests, which
verify: adequacy of the model and time series (e.qR?),
significance of its parameters (e.g.t-Student) and
properties of forecasts (e.g. Chi-square). The vditation
can confirm the model or suggest its modificationchange
of a class, analytical form or parameters (e.g. anrder of
auto-regression).

« The extrapolation generates optimal forecasts and
measures of their precision. Main forms of the foreasts

are: point (y,,,) and interval (general form of linear

models: y,,, Fta/27-pCcONst(4,), With confidence coefficient
(from t-Student distribution) (1-a)), for horizon, h > 1.

14
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* Simple example of a forecast and its error:
Yr.n= F(T+h); h=1,
Var (Yr.n = Y7+n) =Var (Yr.n) +Var (Yr.p,)-

« The process of the model (stochastic process)
building can be not easy-to-operate; typical stepsiclude
(P.H. Franses, D. van Dijk):

- calculate certain statistics indicating a type of anodel

(ARIMA: autocovariances functions),

- comparing the statistics with theoretical values,fithe
type of the model is adequate,

- estimate the parameters of the model, suggested in
previous steps, on the basis of information set,

- evaluate the model using diagnostic measures,
- re-specify the model if necessary,
- use the model for forecasting (or analytic) purpose

* Final model selection is typically realized by amparison
of different forms of models, using statistical tes and
other measures, e.g. AIC or BIC criterion.

The model, which satisfies verification requiremerg
IS reliable and useful in practice!

15
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All models are wrong, some are useful.
G.E.P. Box

2. Main directions of development of
forecasting methods

» Simple models, like trend, have good (simple cuently)
theory: estimation, verification and forecasting, lut are
applicable under restrictive assumptions, especiafi

* simple, constant form of a trend and

* restrictive assumptions about the form of random
variables of stochastic components (constant pararess,
independency).

Therefore can be applied to simple phenomena.

* The next models, developed in last decades, have
eliminated these disadvantages in the following, nrg
directions (overlapping classification):

- relaxing the assumptions about stability of a struttire
and parameters of the model,

- allowing for complex form of stochastic dependencsge
between variables of the stochastic process,

- advancing analytical form of the model.

e Important feature of the models — parsimonious
parametrization (methods efficient for moderate nunber
of observations).

16
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Directions for univariate time series

 Simple trend models
Y, = f(t)+£t; t=1..., (St ~ii.d., N(O’U'g))

f(t)=bo+byt +...+ byt
f (t) = bo+ by SiN4% +p,C0S3%;

Estimation of the polynomial trend, k=1

b=(z'z)'z'y
1 1] Y, |
5= 12 = Y, |
ERE

E(b)=b V =E[(b-b)(b-b)1=G"0?,

T(T+D)
c=|! °
T(T+) T(T+1)(2T+D)

2 6

Estimates equivalent to ML (unbiased, consistent, mimal
variance, asymptotic Gaussian distributions).

17
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EE . .
= £7y-Y. E(G)=0%,
~\_2(2T+1) , - 12 5
Var(py) =———>0%, Var(p)=————0o%,
(bo) T(T—l) O¢ (b1) T(T2—1)U‘9
A AN _6 2
COV(bo,bl)—ﬂUg-

Verification of the model:

- verification of identical, independent, Gaussian
distribution of g, using appropriate statistical tests,

- significance of b1 the hypothesis:
Ho:b1 =0, H1i:by #0(>,<), testt-Student,

- significance of the model: testF-Snedecor (under
Gaussian assumption).

18
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Forecasts:

Point: Vien = ZT+hD’

Var[ey(T+h)] = o2+ [(2T (T -1) +6h(T +h-1)] o2

T(T*-D
Interval (symmetric): 10C(1—-a)%

A A~ ' ! -1, 1/2
yt+hita/2,n—k[0'§(1+ZT+h(ZZ) ZT+h] .

Main properties of forecasts:

- unbiasedness, minimal variances (optimal precisi),
Gaussian distributions with known parameters.

Computations: EXCEL, MINITAB, TSP, STATISTICA,
SPSS

19
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If you have to forecast, forecast often.
E.R. Fiedler

» Relaxing the assumptions about stability of paramters of
the model; some developments:

- exponential smoothing (Brown, Holt-Winters) — the
idea: re-estimating the model parameters each penb
in order to incorporate the most recent periods dad
(with weights decreasing exponentially);

the simplest - constant model, first order exponeml
smoothing (e.g. prices of a fuel):

Yt :b +£t (t:l--'aT)s
_ T-1 t
Y, = th (1—/]) Y1

Vi =AY + A=) Yy
A0(0,1) - smoothing constant (typicallyA 0[0,1, 0,4]),

with the variance

— A
Var (yT) = ﬂvar (yT) :

20
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Estimate p, is obtained from minimization
T-1 t )

té)(l_A) (yt _bO)

for large T

~ T-1 .
bo DAEo(l_)I) Y1t

Typical models:

Linear trend model:  Y; =byt+ bt + &

General trend model: Y, =by+ byt +...+%tk+a

. . . 271t 27t
Sinusoidal trendY; =py+ blsmF + szOSF + &

21
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General approach

» The theoretical basis (Brown):
THEOREM OF EXPONENTIAL SMOOTHING

for general nth—-degree polynomial

bn

Yi :b0+b1t+mﬂ}ﬁ

"+ (g ~iid.N(O, g2).

However, for n>2 the calculations get complicated and

ARIMA models can instead be considered.

The process{y;,t=1,...} (constant or trend) is changing

slowly (parameters p,). The system of weights heuristic,
but with useful statistical (practical) properties.

22
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The point forecast (constant with constant precisia):

A A
y : Var(y.) =——Var = :
Yren = bo y-|- (yT) 5 (yT) /]0'5
gT:yT_yT-
The interval forecast (constant — often unrealistik
9T$Ua/25'ev

where: u,,» appropriate percentile of standard Gaussian
distribution and 62=231 (Y~ Yu1)’s Vg - ONE-step-
ahead forecast (on historic data).

Choice of A - minimization of: SS(A) =X1(y, - ¥,)°.

Point forecast for linear trend model:

yT+h = Igo,T +,31T (T + h) = y‘r +'Bl.T h,
IBO,T+1 =AQ+A) yr,+ L-4 )Z(IBOT + ,BLT),

A — A (P 5 2(1 /l)
,BLT+1_ﬂ(IBo,T+1 ,Bo,T) IBLT

Interval forecast:
2+ 50 97 = W+ 251 972 F ug 12 Ge

y%” =A9P + (-2 972,
cc=1+ [(10-14A +522) + 2iA(4-31) +2i% 1?].

A
(2-2)°

23
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Validation of the model

The basis: sample autocorrelation function of onetsp-
ahead forecasting errors ry, k=1,...,KT («0(0,1) -

should be aroundO (zero) with standard deviation]/ﬁ. If

the values lie outside the +2/</T limits it require
examination.

Another approach: monitoring and modifying the dismunt
factor A, e.g. Trigg and Leach (1967), Chow (1965).

There exists models for seasonal data: additive and
multiplicative.

24
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Summary assessment

* The models are optimal (minimize mean square err
for some ARIMA(O, k, k) processes, the forecasts
typically not (similarly as estimates of parametery the
benefit — simple model and computations.

» The features of the methods:

allowing some changes of the phenomena forecasted,

possibility of computerization (automation) of modé
building and forecasting,

short horizon of forecasts,

empirical (typical): not unbiased, not optimal, ofen
correlated errors.

25
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* Allowing for (more) complex form of stochastic
dependencies between variables of the stochastic
process

- ARIMA( p, d, ) models (Box, Jenkins)

®(B)(1-B)'Y, =O(B)
where:

B (V) = Yioqs 021,
®(B)=1-¢B-...-¢,BP),
O(B)=(1-6B-...-64B%),

®(B), ©(B) - lag-polynomial operators (with roots outside
unit circle — providing statarity ®(B) and
invertibility®(B)),
d — parameter providing stationary process,
&; - Gaussian white noise.

« The (linear) model reflects finite autoregressiveand
moving average dependencies of variables,, with d

differencing providing (weak) stationarity. There exist
optimal estimators and predictors; estimators are on-
liner in the case ofg>1.

26
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 The basis:
THEORY OF ARIMA PROCESSES

The main assumptions:

- weak stationarity of TS: the expected value of TS
K, = E(y,) Is constant, not dependent on time,

- invertibility of ARMA process: roots of ©O(B) less
than one in absolute value (has an infinite AR
representation),

- the autocovariance function y, (k) =Cov(y,,Y,,)

(k=12,...,) for any lag k is only a function of k and
not time.

The form of the ARMA(p, g) model

p g
V,=0+Y @VY_te—2 6 & or
i=1 i=1

P(B)y, =0+0O(B) ¢ .

27
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The main tools for model building (identification,
estimation, validation):

- ldentification based on the autocorrelation functiam
and partial autocorrelation function,

- Estimation the least squares, maximum likelihood —
non-linear for g>0,

- Validation based on:

* residuals (realization of Gaussian white noise):
~ < p ~ q S A
Et — Y _(5"'_% @ Yii _'21 G E-i) s
1= 1=
* statistic based on autocorrelations (chi-squar&-p-q):

K K
Q=(T—0|)k§1 re(k) or Q:T(T+2)k§lT—ﬂ<r§(k)-

28
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Optimal predictor:

Point forecast (in timeT for time T+h, h=1) — conditional
expectation ofy.,, for given y., y._,....

Vron = ElVran | Y50 Yoo -],
er(h) = Yren~ yT+h’
E(er (h)) =0,

Var (e, (h) =a§_h§_; w2 = o2(h),

with  coefficients ¢, determined by relationship
W(B)=®(B) " O(B);

The interval forecast: ¥, * z,,,0(h) .

29
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Example ARIMA(1, 1, 1) process:
1-¢B)1-B) Y., = A=B)eren

yT+h = (1_ (0) Y1iha1 = PY14n-2 T ET+h ™ 9€T+h—1’

yT+h -

~ _{(1_(0) Yr=@Y¥r4-0er @, erQ=y; =¥ (T-1, h=1
(1_ ¢) S\/T+h_1_ ¢S\/T+h—2’ h 2 2.

The rules of forecasting computations:

- unknown values y., ., k>0 are replaced by they
forecastsy.,,,

- “forecasts” of y.,,, k<0 are the known values,

- the optimal forecast of¢r,, k>0 is zero, the “forecasts”
of 14k, K<0 are known valuesgr,y.

30



LESZEK KLUKOWSKI
INSTYTUT BADA N SYSTEMOWYCH PAN

Practical approach to model building:

- To determine “potential” models on the basis of
autocorrelation and partial autocorrelation function
and to estimate these models,

- To choose the best version on the basis of estinsiaf
variance Var(g,), values of criterions AIC, BIC and
tests used in validation.

Sometimes more than one version satisfies criterisnused
during validation; their forecasts are usually simlar.

» The features of the methods:

- optimal properties of statistical tools: identificaion,
estimation, verification and prediction,

- broad area of application,
- successful applications,

- “rigid” assumption about stable form of the model.

31
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- Combination of forecasts

 The (unbiased) forecasts can be often obtained ahe

basis of two or more sources (models). Typically,
combination of such forecasts, e.g. weighted avemgis

more precise (a lower variance), than individual feecasts

(Granger). It is analogy to linear combination of

estimators; the weights can be determined in optimlavay

(Rao, Serfling).

*In the case of two forecasts the solution, the omal
weight ko (0O<ko<1), providing minimum error variance
0%, has a form:

2
_ 02— P0O10>2
Ko

=— . and
o1 to2= 2P 0107
S\/comb:koyl-l_(l_ kO) S\IZ’

. oia3-pd)
Oco

ot to5—2p 0107

01,02 - Standard deviations of forecasty,,y,, PO -
correlation coefficient of forecasts.

32
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* In practice the weights are determined in many wgs, e.g.
on the basis ofn-1 forecasting errors (Granger) — via ML
estimator (under assumption that forecasts have bariate
Gaussian distribution, with known variances and

covariance) k.

nilec(z)z
k — t=n-v
n

T n-1 .
> (e +g??)

t=n-v

 The combining forecasts can be also obtained witthe
use of artificial neuronal networks or non-parametic
approach.

* Typically, combining forecasts exceed significaitt

individual forecasts, but require more than one foecast
(model).

33



LESZEK KLUKOWSKI
INSTYTUT BADA N SYSTEMOWYCH PAN

» The features of the method:
- require versatility of a forecaster,

- typically - the best empirical precision, because ake
use of positive properties of individual, usually
suboptimal, forecasts,

- allow for application of forecasts from different
sources (e.g. institutions).

34
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- Multiple time series models

e Majority the wunivariate models have multivariate
extensions (theory) and applied in practice. The flmwing
models have particular importance:

linear

* ARIMA (ARMAX),

nonlinear

* Kalman’s filter

* ARCH and GARCH,

* threshold and Markov switching.

 The multivariate models allow causality and feedack.
Typically, the number of variables is low; exceptia is
Kalman’s model.

35
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« The ARMA bivariate (vector) model with feedback
(Granger approach):

— w(B) 4 61(B)
Y]_,t - &(B) Y2,t l(B) ,71,'[’

— wB)y, 4 6B)

(Yit, Yoy) - bivariate ARMA (with mean subtracted),
(/7;,/7*2,9 - bivariate white noises, mutually uncorrelated

(a2(0)=0),
w (B), 01(B), ax(B),d2(B), 62(B), #,(B) - parameters;

The above relationships result from:
d(B) Y =O(B)n, (n, - vector white noise)

_e wiB) 6 (B)
Y= s 5@ s 4B

=i (1=12)

example:

a)z B+.. +a)2 B * * *
Yot = 11 Ton 83 YLt+(1_¢92;LB_¢92,2|32)’72,t-

36
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The model building steps, simplified (Granger, Newbld):

- fit the single series models for v;; (j=12)
qoj(B)Yj,t:5?](8)‘;;1-,t (j =1 2), calculate residuals and
standardized residuals,

- calculate the cross-correlogram between the
univariate models residuals and use this to idengfthe
transfer functions ;(B)/9;(B) of models linking

standardized residuals(gsy;, £2y), 1.€.:

— w(B) 4 6.(B) —wB) | 62B)
FLT 58 E2t Ty g Tur E207 5 ELLT gy Ton

(standarized to have unit variances),

- identify the error structures: (g1, £2¢), 1.€. the forms
w;(B)/ 5;(B) and estimate them; check the adequacy of
fitted model,

- amalgamate the bivariate model fitted to residuals
(e1t, £2¢) With two univariate models to suggest the

bivariate model (Yy;,Y>;); estimate the model relating
the original series,

- check the adequacy of the model and, if necessary,
reestimate it.

* The multivariate model building is much more compex
and time-consuming. The model can provide dependeies
between two variables and forecasts with lower errs
than univariate models.

37



LESZEK KLUKOWSKI
INSTYTUT BADA N SYSTEMOWYCH PAN

e Main groups of non-linear methods:

Autoregressive conditional heteroscedastic models
(ARCH),

Generalized autoregressive conditional heterosceda
stic models (GARCH),

State space models,

Regime-switching models: threshold autoregressive
Markov-switching (TAR, SETAR, STAR, MSW),

Artificial networks models.

38



LESZEK KLUKOWSKI
INSTYTUT BADA N SYSTEMOWYCH PAN

- ARCH & GARCH models (Engle, Bollerslev),
(generalized) autoregressive conditional heteroscasticity
(introductory facts)

* Models which are capable of describing (not only}he
feature of volatility clustering, but also other properties of
financial time series, e.g. excess kurtosis

Kg=%2 /(1255) (greater than 3) or fat-tailedness.
=1

Consistent with theory (e.g. Capital Asset-PricingModel)
and empirical evidence; some of the properties imptant
at financial market have models with non-linear fom of
the predictor.

« ARCH model (capture the volatility of clusteringof TS —
large shocks tend to be followed by large shocks)

= E(Y; ‘Qt—l) t &
e =zh 0°=E(ed) = E(E(68Qiv) = E(hy)
z: - lid. standard Gaussian random variable,

= h (Q¢—1) - @ nonnegative function,
Q.1 - iInformation set up to and including timet -1

(distribution of g conditional upon Q4 is N(O, k),
unconditional expectation ofn; is constant).

39
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An alternative representation of ARCH(1) model
(conditional variance of shock at timet is linear function of
squares of past shocks):

ht =a+a1£t2—1 (>0, 0<g1 <)),
g2=a+qieitv,

- 2 — 2
Vi S&—h = ht(Zt _1)

i.e. AR model for ¢Z (stationary foro<ag, <1).

Some features of the model:

0_25 E(gtz) :1__6211

E(v ‘ Q-1 =0,

gf=o’+a(efa— o) +v.

If £2, is larger (smaller) than its unconditional expectd
value g2, £2 is expected to be larger (smaller) tharg? as

well.

The kurtosis of £2 always exceeds kurtosis of?.

40




LESZEK KLUKOWSKI
INSTYTUT BADA N SYSTEMOWYCH PAN

* GARCH model (linear, example — order (1, 1)) — ading
hi—; to the ARCH (1) model.

h = w +0’1€t2—1+,31ht—1 (w>0, >0, B,20, oy + 5, <],
or
h =w taretat By (Wt aretat Bihi-o) =

S S Hi-l 2
_21,81“)"'0'1_21 Bi et
1= 1=

Some properties of the model.

GARCHY(1, 1) corresponds to ARCH¢) model, makes it
possible to replace ARCH with large ¢g; it is an

2 2 —
ARMA(1, 1) for g and g _Kw—ﬂl'

Kurtosis K, is always larger than 3 (Gaussian).

* The parameters of the models have to satisfy regttions,
allowing estimation (ML, QML, robust methods) and
diagnostic checking. The models are adequate in prace
(financial data) and have many extensions, also nbmear
(have additional properties, e.qg. different effect®f positive
and negative shocks). The validation is based on é&h

. A=l . .
properties of 2 =4 p,? (constant variance, lack of serial

correlation, etc.), tested with the use of standardests.
Other properties (parameter constancy) — specialize LM
tests.
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e The form of forecasting formulas — extension of mtimal
forecasts for ARMA models, especially for GARCHL, 1):

Yi =@ Yiqt s

A — A2 A

hr+s ™= w+0’15T+s—1+,81 ht+s-1 (321)
where: g2, =f,; for i>0,

9T+s = E(yt+s ‘ Qt)l
9T+s:¢lsyt’

the conditional squared prediction error:
S _: S _:

E(efes [Q) =2 g%+ 2 gV Bl [Q)-0?)
(= (=

(conditional variance is varying over time — largeror

smaller than homoscedastic errors),
. 2 _ o _
lim E(ef,. | Q) =g =gl

S0 1-

The Interval forecast cannot be determined In
,conventional” way, becauseer,. IS not Gaussian.
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Conditional expectation ofhy..:

~ _ A~ ~2 .

hris =@t o 5'I2'+s—1 + BihT+e1;

if g1+ B, <1 (covariance stationarity) then

FIT+s = 0'2 + (0’1 + ,81)5_1(ht+1_ 0'2); 0'2 — w/(l_ air— ,81);

Thus, forecasts for the conditional variance are miilar to
forecasts from AR(1) model with meang? and AR

parameter g, + ;.
For g, + B, =1 it simplifies to

F\T+s = a(S—1) + hs.
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» General basis of the methods:

THEORY OF GENERALIZED AUTOREGESSIVE
CONDITIONAL HETEROSCEDASTICY

» The features of the methods:

allow modeling of the processes with: high frequerng
asymmetric disturbances, clustering of variancesphg
memory, heavy tails,

not easy estimation (many parameters) and
prediction,

valuable description (analytical) of a phenomena,

extended for effects of positive and negative shogk
with the use of regime switching models,

empirical features: often biased forecasts, poor
volatility forecasts (large MSPE error), with low R?,

e.g. lower O,1.
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Advancing analytical form of the model
reflecting nonlinearity, different form of the model in
different regimes and allow some dynamic of varial@s

- Regime switching (non-linear) models (Tonq), 2 emes

* threshold autoregressive AR(1)
_ ¢0,1+¢11Yt—1+£t If Yi1<C,

¢o,2 + ¢:L2Yt—1 +g If Yiu>cC

Yt

c —constant (threshold), g, - Gaussian iid.

Features of the model:

- existence of single equilibrium (stable or not),
multiple equilibria or not equilibrium, for g, equal

zero (equilibrium y = F(y)),

- existence of stable equilibriums - attractors
(y istheattractor for y if y, =y,and y,,, - y ash - o,
if £+;=0 for all j>0),
also in the form of limit cycles
(k- period cycle—a set of pointsyj, ..., y, suchthat
Y, =F(yip). i=2...kand y{ = F(y}))
(endogenous dynamics), (F(y,.) - conditional
expectation ofy, at time t-1).

- conditions of stationarity - for simple models.
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* smooth (gradual) transition AR
Yt = (¢o,1+ ¢L1Yt—])(1_G(yt—1; y,C))+
(¢o,2 + ¢12Yt—])G(yt—1; 4 C) * &ty

1

1+expEy(y,4—©)’
G(c;y,c) =05

(logistic transition function, ¢ — threshold,
y -smoothness of the change between regimes).

G(Y:10) =

* Markov — switching

v, = Port P Yiate If 5 =1
t B .
¢0,2+¢12Yt—1+£‘t If 5 =2

s - unobservable process

P(s =1s.=1) = p,, P(s =25:=1) = p,,....,

P(s = 2‘3_1 =2)= P,y Pyt Py=1 Pyt Py, =1
unconditional probabilities:

— _ 1- P2, — — 1- P11
P(St B 1) 2- PPy P(St 2) 2-py= Py
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Specification procedure for regime switching models
(1) specify order of AR process,

(2) test linearity versus non-linearity,
(3) estimate the parameters,

(4) use the diagnostic tests (also: AIC, BIC
criterions),

(5) modify the model if necessary,

(6) use the model for analyzing and forecasting
purposes.
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e There exist optimal estimators, however much more
complex, than in simple linear models; some of themare
based on “direct” (numeric) optimization. The predictors
for multiple step ahead are based also on Monte Chr and
bootstrap methods. The threshold models allow state
dependent dynamic behavior, different in individual time
intervals (Tong, Granger).

e« Many other switching models — Markovian regressio
(Quandt), breaking points of the Markovian trend
(L. Klukowski Ph.D.).

» The features of the methods:

- allow different form of the model in different time
intervals,

- give information about braking points,

- complex in estimation and forecasting, but
indispensable; some theoretical issues — no conales
results,

- have been developed in purpose to allow for
asymmetric effect of positive and negative shocks
using GARCH concept, asymmetric nonlinear smooth
transition GARCH, etc.,

- empirical features: often biased forecasts, errors
greater than from linear models; examples of reasa
spurious non-linearity, different precision in different
regimes, long series from one regime.
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- Kalman'’s filter, dynamic linear model:

 The model

Yi =Xi6:tur: (v ~N(@OV,)) - the observation equation,
6 =G@._1+w: (w ~N(O, W,)) - the systems equation,

g, - vector of parametery;, G - matrices.

» Optimal predictor - unbiased, minimal variance.

 The model with non-constant parameters, updated
In recurrent, Bayesian way.

 The idea applied in estimation of special cases:
Harrison-Stevens, Hamilton (Markovian) models.
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The basis of the univariate Harrison-Stevens wdel:

Yt:ﬂt'l'a’
Iut:Iut—1+18t+yt’
Bi=Biat <y

| M4 _ 111
ol baedss]

a. ;. {, - random variables with the variancesgsg, g}, 0% .

The model can be in one of the four states:

- steady state (level and trend constant), with “norral”
value g2 and zeroes for remaining variances,

- a step change — withgg normal, g, large and g%
Zero,

- a slope change — withgg normal, gy zero and g%
large,

- an outlier — with g¢ large, g7 zero and g7 zero.

The forecasts are calculated as weighted average tife
four states with weights expressing probabilitieshat the
current observation of the processy; is in each state. The
probabilities are updated using Bayesian approachwith
some a’priori distribution. The model is based on Klman
filter idea and reflects typical features of some ¥; in such
the case provides precise forecasts for one step ezul.
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 The basis:

THE THEORY OF FILTERING OF STOCHASTIC
PROCESSES

» The features of the method:

- allows changes of deterministic and stochastic
parameters of the model,

- possible application to multidimensional series,

- long time series not necessary, as a basis for
estimation; instead some parameters are necessary.
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- Artificial neural networks (general evaluation)

« The models can detect and provide truly nonlinear
dynamic relationships, e.g. bilinear models

(Y, =BY, &t &), In practice it is often superior in
comparison to linear time series models. The drawlaks
are that: *the form and parameters are difficult to

interpret, * the superior in sample fit does not garantee
out-of-sample forecasting, * danger of over-fitting

» Basis:
THEORY OF ARTIFICIAL NEURONAL NETWORKS

e The model building:

* choosing the activation function,

* choosing the number of hidden units,

* choosing the number of lags to use as input vardes,

The selection criterion: AIC, BIC, genetic algorithm, etc.
e The forecasts, in point and interval form, are esy to

obtain and evaluate for one step ahead, for multiteps —
more complicated.
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» The simulation experiments show, that the neuramodels
do not capture some types of no-linearity, e.g. M&ov-
switching or GARCH.

» The features of the methods:

- current, universal, non-linear, optimal tools basedon
computer technology,

- broad spectrum of application,

- not for uncritically application, often fitting to the
series much more precise than forecasts.
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3. Some comparisons of empirical forecasts

 The accuracy of empirical forecasts depends on mg
factors, especially:

- properties of the model — theoretical and empirical
(ability to reflect properties of actual phenomena)

- number of elements of time series,

- properties of time series (variability, non-linearty
outliers),

- properties of estimators (precision, robustness),
- experience level of researchers.

* In general the best forecasts result from “supear”
models, which are estimated and predicted in optiniavay.
Such the properties have majority of the models
presented: ARIMA, Kalman’s filter, ARCH, GARCH,
regime switching models (threshold, Markovian), arificial
neural networks, multivariate models. However,
application of advanced methods is not easy - needs
experience, long series (exception is Kalman’s fdt) and
significant computational effort. Therefore simple, and
also heuristic methods, are still in use.

Good compromise ensures combining approach.
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4, Summary and conclusions

* The amount of time series models for modeling and
forecasting of time series is currently enormous.
Majority of them have been developed in last
decades.

« The main factors, stimulating the development
were: complexity of phenomena, theoretical progress
and efficiency of computing systems.

e Further development allows applications In
broader area, higher precision and longer distant.
Importance of accurate forecasts increases in
competitive economy.

» Therefore, it is a field of intensive researches.
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Thank you for your
attention!
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